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1 Introduction

Some time ago, Bardeen and Horowitz (BH) showed that one can take a near-horizon limit
of the extreme Kerr geometry to obtain a spacetime similar to AdS2 × S2 [1]. This near-
horizon extreme Kerr (NHEK) geometry has an SL(2,R)×U(1) isometry group, where the
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U(1) is inherited from the axisymmetry of the Kerr solution and the SL(2,R) extends the
Kerr time-translation symmetry. Recently, Guica, Hartman, Song and Strominger (GHSS)
have conjectured that quantum gravity in the NHEK geometry with certain boundary
conditions is equivalent to a chiral conformal field theory (CFT) in 1+1 dimensions [2].
Using this, they gave a statistical calculation of the entropy of an extreme Kerr black hole.

More precisely, GHSS showed that there exist boundary conditions on the asymptotic
behaviour of the metric such that the asymptotic symmetry group is generated by time
translations plus a single copy of the Virasoro algebra, the latter extending the U(1) sym-
metry of the background. Hence, if a consistent theory of quantum gravity can be defined
in NHEK with these boundary conditions then it must be a chiral CFT. There has been
considerable interest in extending the Kerr-CFT conjecture, and entropy calculation, to
other extremal black holes [3].

The GHSS boundary conditions are unusual in two respects. First, they specify the
rate at which components of hµν (the deviation of the metric from the NHEK geometry)
should behave asymptotically. We shall refer to these as the “fall-off” conditions. Most
components decay relative to the background but some are allowed to beO(1) relative to the
background. Secondly, GHSS impose a supplementary boundary condition, namely that the
energy (the conserved charge associated with the generator L0 of SL(2,R)) should vanish.

One motivation for this paper is that the GHSS fall-off conditions are motivated en-
tirely by considerations of the asymptotic symmetry group. However, boundary conditions
are also required for classical physics to be predictable from initial data in a non-globally
hyperbolic spacetime such as NHEK (or anti-de Sitter). It is not clear whether these bound-
ary conditions will be compatible with the unusual GHSS boundary conditions. Indeed, it
is not even clear whether the GHSS boundary conditions allow propagating gravitational
degrees of freedom, or whether they lead to physics similar to Einstein gravity in AdS3,
where non-trivial physics is associated with large gauge transformations (i.e., non-trivial
elements of the asymptotic symmetry group) and black holes that are locally, but not
globally, gauge [4]. We shall investigate these issues by studying linearized gravitational
perturbations of NHEK.

Another motivation for studying perturbations of NHEK is associated with positivity
of the energy. The GHSS “zero energy” condition arises from the desire to consider only
the ground states corresponding to an extreme Kerr black hole, rather non-extremal ex-
citations. However, this presupposes that the energy must be non-negative. The NHEK
geometry possesses an ergoregion, inherited from the ergoregion of the Kerr black hole. It
is well-known that, in the presence of an ergoregion, one can construct initial data for test
matter fields for which the energy of these fields is negative [5]. For a Kerr black hole, this
is not a problem because the positive energy theorem [6] ensures that the total energy of
the spacetime (black hole plus matter) is non-negative. This is a non-trivial result, which
may not extend to NHEK.1 Furthermore, in a spacetime with an ergoregion but no event
horizon, e.g. NHEK (adopting the global perspective), if one imposes boundary conditions

1If one wanted to prove such a theorem using spinorial methods then NHEK would have to admit a

spinor field covariantly constant with respect to some connection. As far as we know, no such spinor field

has been constructed.
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such that there is no energy in the matter fields entering from infinity, then the total en-
ergy of these fields can only decrease. If it is initially negative then it will become more
negative, suggesting an instability [5].

It should be noted that the issue of NHEK stability is subtle: BH pointed out that
the singularity theorems imply that there exist small perturbations of NHEK that will
lead to the formation of a singularity. In this sense, NHEK is unstable. However, as BH
also observed, such a singularity might be hidden inside a tiny black hole.2 If this has
positive mass then there would not be a problem. However, if the energy is negative, or
the singularity is naked, then it would be difficult to make sense of NHEK.

The NHEK geometry shares many similarities with AdS3: indeed, it is foliated by
warped AdS3 submanifolds, which have been discussed extensively in recent work on topo-
logically massive gravity (TMG) [7]. In TMG, there are propagating gravitational degrees
of freedom but some of these turn out to have negative energy, signaling a potential insta-
bility of AdS3 [8]. In the chiral limit, the propagating modes are eliminated by boundary
conditions at infinity [8, 9], leaving only pure gauge modes and BTZ black holes, just as
in Einstein gravity . Away from the chiral limit, AdS3 is unstable but there exist warped
AdS3 solutions that might provide an alternative ground state [10]. The stability of some
of these has been investigated recently [11]. Again, there are propagating modes with
negative energy but these are excluded by boundary conditions.

We now describe the approach we shall take. NHEK is a type D vacuum spacetime so
one can obtain decoupled equations describing gravitational perturbations using Teukol-
sky’s method [12, 13]. The Teukolsky equation turns out to be very similar to the equation
governing a massless scalar field in NHEK, which was discussed by BH, and the qualitative
features of our solutions closely resemble theirs.

By expanding in (spin-weighted, spheroidal) harmonics on the S2 of the NHEK geom-
etry, we reduce the Teukolsky equation to the equation of a charged massive scalar in AdS2

with a homogeneous electric field. This equation can be solved in terms of hypergeometric
functions. Depending on the labels (l,m) of the spheroidal harmonics, the solutions either
grow or decay as powers of the AdS2 radial coordinate, or they are oscillating at infinity.
In the former case, the natural “normalizable” boundary conditions lead to quantized fre-
quencies: we shall refer to these as normal modes. These modes fill out highest-weight
representations of a Virasoro algebra which extends the SL(2,R) isometry group of AdS2,
indeed such modes have been obtained previously in the context of a charged scalar in
AdS2 with electric field [14]. A particularly important set of normalizable modes are those
arising from axisymmetric (m = 0) perturbations of NHEK.

The other set of modes are those that oscillate at infinity. Following BH, we refer to
these as traveling waves. These modes typically have large m for given l: |m| ≈ l. From the
AdS2 perspective, these correspond to modes that have complex weight with respect to the
generator L0 of SL(2,R) and so would not normally be considered. However, in NHEK it

2The same might be true in AdSd for d ≥ 4: AdSd is like a confining box, and a small gravitational

perturbation in a box might be expected to evolve ergodically. If so, eventually sufficient energy will be

concentrated into a small enough region to produce a tiny black hole. We thank G. Horowitz for discussion

of this point.
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would be very restrictive to discard these modes since that would correspond to a restriction
on the allowed values of (l,m). Even if such a restriction were imposed at the linearized
level, it would be violated at the nonlinear level through interactions between modes.

The traveling waves carry energy and angular momentum to infinity. BH showed that
such modes are associated with superradiant scattering in the NHEK geometry. However,
rather than considering scattering, we are interested in the question of what happens to
localized initial data. We therefore impose purely outgoing boundary conditions at infinity.
We find that the modes corresponding to traveling waves become exponentially damped,
i.e., they are quasinormal modes of NHEK, describing the decay of a small perturbation
via radiation to infinity. Therefore NHEK is stable against linearized gravitational pertur-
bations. The reason that the above argument for instability based on the energy in matter
(or linearized gravitational) fields fails is that some outgoing waves carry negative energy
to infinity. Hence the energy flux through infinity need not be positive and so the energy
need not decrease with time.

So far, our discussion of gravitational perturbations has been based entirely on the
Teukolsky equation. However, in order to calculate the energy, or discuss fall-off conditions
on the metric, we need to know the perturbed metric tensor rather than just the Teukolsky
scalars. Fortunately, there exists a method for determining the metric perturbation in
terms of a scalar potential, called the Hertz potential [15]–[19]. This satisfies an equation
closely related to the Teukolsky equation. Using this, we obtain explicit results for the
form of the metric perturbation.

We find that most (but not quite all) normal modes satisfy the GHSS fall-off condi-
tions but traveling waves violate these conditions. Although one can construct localized
wavepackets involving the latter, they will eventually propagate to infinity and violate the
fall-off conditions. Therefore, at the linearized level, they should be excluded, leaving just
the normal modes.

Next, we consider the energy of the normal modes. To warm-up, we start by considering
a massless scalar field. We are able to show that an arbitrary superposition of normal
modes has positive energy. Then we turn to gravitational perturbations. We define the
energy of the latter in the usual way using the Landau-Lifshitz “pseudotensor”. Since the
metric perturbation involves second derivatives of the Hertz potential, the energy involves
an integral of a complicated quantity sixth order in derivatives. Nevertheless, using a
combination of analytical and numerical methods, we find that the energy of gravitational
normal modes is positive, thus supporting the validity of the GHSS zero-energy condition.

This positive energy result is satisfying but the exclusion of the traveling waves is
worrying. First, it is worrying that we can construct initial data that satisfy the fall-off
conditions, but violate these conditions when evolved. It suggests that the initial value
problem, at least for linearized fields, may not be well-posed. Furthermore, if one goes
beyond linearized theory then interactions between modes will excite traveling waves even
if they are not present initially.3 So one might worry about well-posedness of the nonlinear
theory too. It is possible that these problems are cured by backreaction, i.e, going beyond
the linearized approximation. We shall discuss this further at the end of the paper.

3The only way to escape this conclusion is to consider only axisymmetric (m = 0) modes, which form a

consistent truncation of the full set of modes.
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This paper is organized as follows. In section 2, we derive and solve the Teukolsky
equation in the NHEK background, obtaining the spectrum of normal, and quasinormal
modes. In section 3 we introduce the Hertz potential and use it to obtain the explicit form
of linearized perturbations. We compare the asymptotic behaviour of these with the GHSS
boundary conditions. We then calculate the energy of scalar field and gravitational normal
modes. Finally, section 4 discusses how going beyond the linearized approximation may
solve some of the problems just discussed.

Note added. As this work was nearing completion, we learned that another group is
exploring similar issues [20].

2 Massless fields of arbitrary spin in NHEK

2.1 NHEK and its Newman-Penrose tetrad

In global coordinates the NHEK metric is [1] (we use the notation of ref. [2] and, because
we shall employ the Newman-Penrose formalism, a negative signature metric)

ds2 = −2GJΩ2(θ)
(
−(1 + r2)dt2 +

dr2

1 + r2
+ dθ2 + Λ2(θ)(dφ+ rdt)2

)
, (2.1)

with

Ω2(θ) ≡ 1
2

(1 + cos2 θ), Λ(θ) =
2 sin θ

1 + cos2 θ
, GJ = G2M2

ADM ≡M2. (2.2)

Surfaces of constant θ are warped AdS3 geometries, i.e., a circle fibred over AdS2 with
warping parameter Λ2(θ). The isometry group is SL(2,R) × U(1). BH showed that the
solution is geodesically complete, with timelike infinities at r = ±∞. There is an ergoregion
(where ∂/∂t is spacelike) which extends to r = ±∞.

In the next subsection we study perturbations in the NHEK using the Teukolsky formu-
lation. For that we need the Newman-Penrose (NP) tetrad, spin coefficients and directional
derivatives. In appendix A we obtain the shear-free null geodesics of this background and
use them to construct the associated NP null tetrad [21], e(1) = `, e(2) = n, e(3) = m,
e(4) = m∗, where (coordinates are listed in the order {t, r, θ, φ})

`µ =
1

1 + r2

(
1, 1 + r2, 0,−r

)
,

nµ =
1

4M2Ω2(θ)
(
1,−(1 + r2), 0,−r

)
,

mµ =
1√

2M(1 + i cos θ)

(
0, 0, 1, iΛ−1(θ)

)
, (2.3)

and e(a) = η(a)(b)e(b) with non-vanishing symmetric η(a)(b) = η(a)(b) given by η(1)(2) =
−η(3)(4) = 1. This NP tetrad satisfies the normalization and orthogonality conditions (A.16),
and the null vector ` is tangent to affinely parametrized geodesics: `µ∇µ`ν = 0.
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Ψ(s) (−Ψ2)
4
3 Ψ4 Ψ0 (−Ψ2)

2
3 φ2 φ0 (−Ψ2)

1
3 χ1 χ0 Φ

s −2 2 −1 1 −1
2

1
2 0

T(s) 2 (−Ψ2)
4
3 T4 2T0 (−Ψ2)

2
3 J2 J0 (−Ψ2)

1
3 Tχ1 Tχ0 TΦ

Table 1. Teukolsky fields Ψ(s), spin s and source terms for the master equation (2.5).

The unperturbed Weyl scalars in the NHEK geometry are computed using (A.20),
yielding

Ψ0 = Ψ1 = Ψ3 = Ψ4 ≡ 0 ,

Ψ2 = −
[
M2(1− i cos θ)3

]−1
. (2.4)

The first line confirms that this solution is indeed Petrov type D.

2.2 Teukolsky master equation

Teukolsky has shown how, for type D spacetimes, one can use the NP formalism to derive a
system of decoupled equations, that furthermore separate into an angular and radial part,
for the perturbations of several NP scalars [12, 13]. For gravitational perturbations, the
relevant quantities are the perturbed Weyl scalars Ψ(1)

0 (spin s = +2) and Ψ(1)
4 (s = −2);

the complex NP scalars φ0,1 for spin s = ±1 Maxwell perturbations; the Weyl fermionic
scalars χ0,1 for massless spin s = ±1

2 perturbations; and the scalar field Φ for massless spin
s = 0 perturbations. Teukolsky’s master equation encompasses all of these cases [13].

Using the NP quantities listed in appendix A, we find that the Teukolsky master
equation for spin s field perturbations Ψ(s) in the NHEK geometry is

1
(1 + r2)

∂2
t Ψ(s) − 2r

(1 + r2)
∂t∂φΨ(s) +

(
r2

1 + r2
−
(
1 + cos2 θ

)2
4 sin2 θ

)
∂2
φΨ(s)

−
(
1 + r2

)−s
∂r

((
1 + r2

)s+1
∂rΨ(s)

)
− 1

sin θ
∂θ

(
sin θ ∂θΨ(s)

)
− 2s

r

(1 + r2)
∂tΨ(s)

−2s
(

1
(1 + r2)

+ i
cos θ
sin2 θ

+ i
1
2

cos θ
)
∂φΨ(s) +

(
s2 cot2 θ − s

)
Ψ(s) = T(s) . (2.5)

We have allowed for the possibility of a source term on the RHS (see appendix C). The
relation between the nomenclature used here and the original notation of Teukolsky [13]
is {Ψ(2),Ψ(1),Ψ(1/2)} = {Ψ0, φ0, χ0} and {T(2), T(1), T(1/2)} = {T0, J0, Tχ0} for positive spin.

For negative spin the map is {Ψ(−2),Ψ(−1),Ψ(−1/2)} = {(−Ψ2)
4
3 Ψ4, (−Ψ2)

2
3 φ2, (−Ψ2)

1
3 χ1}.

Here, the powers of the unperturbed Weyl scalar Ψ2 are those that allow for the separation
of the master equation, when we further assume an ansatz for the perturbation that is a
radial function times the spin-weighted spheroidal harmonic; see (2.6). For the source term
one has the map {T(−2), T(−1), T(−1/2)} = {T4, J2, Tχ1}. These relations are summarized
in table 1.

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
1
0
1

2.3 Separation of variables

We shall solve the Teukolsky equation in the NHEK geometry by separation of variables.
Assuming

Ψ(s) =

{
e−iωteimφR

(s)
lmω(r)S(s)

lm (θ) (−Ψ2)−
2s
3 , s ≤ 0 ,

e−iωteimφR
(s)
lmω(r)S(s)

lm (θ) , s ≥ 0 ,
(2.6)

equation (2.5) separates into an angular and radial equations. The angular equation is

1
sin θ

d

dθ

(
sin θ

d

dθ
S

(s)
lm (θ)

)
+

[
(C cos θ)2 − 2sC cos θ + s+ Λ(s)

lm −
(m+ s cos θ)2

sin2 θ

]
S

(s)
lm (θ) = 0 ,

(2.7)
for C = m/2 and where Λ(s)

lm is the separation constant. Its eigenfunctions are the spin-
weighted spheroidal harmonics eimφS(s)

lm (θ) (the nomenclature usually includes an appro-
priate normalization factor; see e.g., [22]), with positive integer l specifying the number
of zeros, ` − max{|m|, |s|}, of the eigenfunction. The associated eigenvalues Λ(s)

lm can be
computed numerically with very good accuracy and are specified by s, l,m subject to the
regularity constraints that −l ≤ m ≤ l must be an integer and l ≥ |s|. The transformation
θ → π − θ can be used to show that

Λ(s)
lm = Λ(s)

l(−m), Λ(−s)
lm = Λ(s)

lm + 2s . (2.8)

We also note that, to leading order in C, Λ(s)
lm = (l − s)(l + s + 1) +O(C). This is useful

when |m| � l.
Equation (2.7) represents the most standard way to write the spin-weighted spheroidal

harmonic equation. However, it will be convenient here to work with shifted eigenvalues
Λ̃(s)
lm defined by

Λ̃(s)
lm ≡ Λ(s)

lm + s2 + s− 7C2. (2.9)

The advantage of using these quantities is that they have the symmetry

Λ̃(−s)
lm = Λ̃(s)

lm. (2.10)

Notice that in the Kerr background with mass M and angular velocity ΩH the angular
equation for spin s perturbations is also (2.7) but with CKerr = aω̃, where a = 2Mr+ΩH is
Kerr’s rotation parameter and ω̃ the wave’s frequency in this geometry. As observed in [1],
in the near-horizon limit of extreme Kerr, all finite frequencies ω in the NHEK throat
correspond to the single frequency ω̃ = mΩext

H = m
2M in the extreme Kerr geometry. This

ω̃ corresponds precisely to the marginally unstable superradiant frequency, and in the NH
limit one finds CKerr = Mω̃ → C = m/2.

Writing for any spin,

R
(s)
lmω(r) = (1 + r2)−s/2 Φ(s)

lmω(r) , (2.11)

we find that the radial equation associated with (2.5) can be written also in a unified way as

d

dr

[
(1 + r2)

d

dr
Φ(s)
lmω(r)

]
−
[
µ2 − (ω + qr)2

1 + r2

]
Φ(s)
lmω(r) = 0 , (2.12)

– 7 –
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with

q = m− is ,

µ2 = q2 + Λ̃(s)
lm = Λ(s)

lm + s− 2ism− 3m2

4
. (2.13)

This is exactly the equation for a charged massive scalar field in AdS2 with a homogeneous
electric field: take the AdS2 metric in global coordinates,

ds2
2 = (1 + r2)dt2 − dr2

1 + r2
dr2 , (2.14)

and the electric field to arise from the potential

A = rdt. (2.15)

Define the covariant derivative for a field of charge q as

D = ∇− iqA, (2.16)

where ∇ is the Levi-Civita connection in AdS2. The equation for a charged scalar field
Φ(t, r) with mass µ is then

D2Φ + µ2Φ = 0 . (2.17)

Assuming
Φ(t, r) = e−iωt Φ(r) , (2.18)

the equation of motion reduces to (2.12). Therefore, a general spin s perturbation with
angular momentum m in NHEK obeys the wave equation for a massive charged scalar field
in AdS2 with a homogeneous electric field. However, note that the charge q is complex, as
is the squared mass µ2, although µ2 − q2 is real. The problem of a massive charge scalar
field in AdS2 with homogeneous electric field was studied in ref. [14], where solutions cor-
responding to highest weight representations of a Virasoro algebra extending SL(2,R) were
obtained. We shall recover the same solutions in the next section.

2.4 Solving the radial equation

Asymptotically, the solutions of (2.12) behave as

Φ(r) ∼ |r|−1/2±η/2, (2.19)

where
η =

√
1 + 4 (µ2 − q2) =

√
1 + 4Λ̃(s)

lm, Im(η) ≥ 0. (2.20)

Note that η(s, l,m) = η(−s, l,m) = η(s, l,−m). We can now see that the modes can
exhibit qualitatively different behaviour, depending on the value of (l,m), as first noticed
by BH (for s = 0). Some modes have real η and others have imaginary η. For example,
axisymmetric modes (m = 0), have, for general s,

η = 2l + 1 (m = 0). (2.21)

– 8 –
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Figure 2. Values of η2, defined in (2.20), for |s| = 2, and a) l = 4 and b) l = 16.

i.e., such modes exhibit power-law behaviour at infinity. However, for certain other modes,
specifically those with |m| ≈ l, η is imaginary and hence the solutions oscillate at infinity.
In figures 1 and 2 we show how η2 depends on m for gravitational perturbations with some
different values of l.

It is interesting to ask which modes have the smallest real value for η since these will
give the normal modes that decay most slowly at infinity. For gravitational perturbations
(|s| = 2) we have calculated η for all (l,m) with l ≤ 30 and find that the mode with the
smallest real value for η occurs for l = 4, |m| = 3, which gives η = 2.74.

Equation (2.12) can be solved exactly. This is not a surprise since in the Kerr geometry,
Teukolsky and Press [23] found that the corresponding Teukolsky radial equation can also
be analytically solved in the particular case where we have extreme Kerr and a wave
frequency that saturates the superradiant bound, ω̃ = mΩext

H . As discussed after (2.10),
all frequencies in NHEK correspond to the single superradiant threshold frequency in the
extreme Kerr. So we indeed expect this property for the radial equation in NHEK.

Introducing the new radial coordinate,

z =
1
2

(1− ir) , (2.22)

– 9 –
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and redefining the radial wavefunction as

Φ(s)
lmω(r) = zα(1− z)β F , with α ≡ 1

2
(ω − iq) , β ≡ 1

2
(ω + iq) , (2.23)

the radial equation (2.12) can be rewritten as

z(1− z)∂2
zF + [2α− 2 (α+ β) z] ∂zF −

[
(α+ β + 1)(α+ β − 2) +

(
q2 − µ2 + 2

)]
F = 0 .

(2.24)
This wave equation is a standard hypergeometric equation [24], z(1− z)∂2

zF + [c− (a+ b+
1)z]∂zF − abF = 0, with

a =
1
2

(1 + η + 2ω) , b =
1
2

(1− η + 2ω) , c = 1 + ω − iq , (2.25)

and hence the most general solution in the neighborhood of z = 0 is [24]

Φ(s)
lmω = Azα(1− z)βF (a, b, c, z) +Bzα+1−c(1− z)βF (a− c+ 1, b− c+ 1, 2− c, z). (2.26)

We render this function single valued in the complex z plane by taking branch cuts to run
from −∞ to 0 and from 1 to +∞, corresponding to taking | arg(z)| < π, | arg(1− z)| < π.
Note that the branch cuts do not intersect the line Re(z) = 1/2, which corresponds to real r.

2.5 Boundary conditions

The above solution of the radial equation is regular for all finite r. Using standard prop-
erties of the hypergeometric function, we find that it exhibits the following behaviour
as r → ±∞:

Φ(s)
lmω ≈ Γ(b− a)C±e±iπ(β−α−a)/2

(
|r|
2

)−(1+η)/2

+ Γ(a− b)D±e±iπ(β−α−b)/2
(
|r|
2

)−(1−η)/2

,

(2.27)
where

C± = A
Γ(c)

Γ(b)Γ(c− a)
−Be±iπc Γ(2− c)

Γ(b− c+ 1)Γ(1− a)
,

D± = A
Γ(c)

Γ(a)Γ(c− b)
−Be±iπc Γ(2− c)

Γ(a− c+ 1)Γ(1− b)
. (2.28)

The boundary conditions now depend on whether η is real or imaginary.

2.5.1 Normal modes

Assume that η is real. In this case, we impose normalizable boundary conditions, cor-
responding to demanding that D+ = D− = 0, a pair of simultaneous equations for
A, B. Non-zero solutions exist only if the determinant of this system vanishes. Using
Γ(z)Γ(1− z) = π/ sin(πz), this gives

(1− c)π
Γ(a)Γ(1− b)Γ(c− b)Γ(a− c+ 1)

= 0. (2.29)
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This imposes a quantization condition on ω, corresponding to the two solutions a = −n
and 1− b = −n where n = 0, 1, 2, . . ..4 The former solution gives

ω = −(n+ 1/2 + η/2), n = 0, 1, 2, . . . , B = 0, (2.30)

and the latter gives

ω = n+ 1/2 + η/2, n = 0, 1, 2, . . . , A = 0. (2.31)

We can summarize the normal mode spectrum as

ω = ±(n+ 1/2 + η/2) , n = 0, 1, 2, . . . . (2.32)

This is precisely the spectrum of normal modes found for a massive charged scalar in AdS2

with a homogeneous electric field in ref. [14].
Note that we have allowed ω to be positive or negative. This is because the Teukolsky

equation for s 6= 0 is not invariant under complex conjugation, so negative frequency
solutions are not simply related to positive frequency solutions by complex conjugation,
they have to be considered separately. The two possible signs correspond to the two
different helicities of the field. The radial equation is invariant under ω → −ω, r → −r
hence Φ(s)

lm(−ω)(r) ∝ Φ(s)
lmω(−r).

For n = 0, the positive frequency solution of the radial equation is

Φ(s)
lm(n=0) ∝ z

−(1+η)/4+iq/2(1− z)−(1+η)/4−iq/2, (2.33)

and the negative frequency solution is obtained by r → −r, i.e., z → 1− z. The solutions
with positive n are related to these n = 0 solutions by multiplication by a polynomial of
degree n in z.

2.5.2 Traveling waves

Now consider the case of imaginary η. Define η̃ > 0 by η = iη̃. The radial function
oscillates at infinity, corresponding to incoming or outgoing waves (see appendix B for
details). Rather than considering scattering in NHEK, we shall impose boundary conditions
corresponding to purely outgoing waves at infinity, which will discretize the frequency ω and
render it complex. A solution with positive imaginary part corresponds to an instability,
and a solution with negative imaginary part is a quasinormal mode.

As discussed by BH, there are two inequivalent notions of “outgoing” that one can
use in NHEK because the phase velocity and group velocity of wavepackets need not have
the same sign, e.g. for positive ω and m, the group and phase velocities have the same
sign at r = +∞ but opposite sign at r = −∞ (see table 3). Physical boundary conditions
correspond to the notion of “outgoing” defined using the group velocity. However, it is
easier to analyze the case of outgoing phase, so we shall consider this case first.

4At first sight, condition (2.29) could also be satisfied if we imposed c = 1, i.e., ω = iq. However, a more

careful analysis rules out this possibility because for c = 1, (2.26) is not a solution of the problem: one must

allow for a logarithmic dependence in the second part. Redoing the analysis with the appropriate regular

radial solution for this special case [24], we conclude that nothing physically special occurs for c = 1.
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Assume that Re(ω) > 0. Then the solutions with outgoing phase at r → ±∞ are the
solutions with C± = 0. This leads to the quantization condition

(1− c)π
Γ(b)Γ(1− a)Γ(c− a)Γ(b− c+ 1)

= 0, (2.34)

with solution 1 − a = −n, n = 0, 1, 2, . . . (b = −n is inconsistent with Re(ω) > 0), which
gives ω = n+ 1/2− iη̃/2. Repeating the exercise for Re(ω) < 0 requires D± = 0, and leads
to ω = −(n+ 1/2)− iη̃/2. We can summarize the result as

ω = n+ 1/2− iη̃/2, n ∈ Z (2.35)

The imaginary part is negative, hence these are quasinormal modes. This is a little sur-
prising. BH pointed out that the energy flux (for positive frequency modes) has the same
sign as the phase velocity. Hence outgoing phase should correspond to outgoing energy
at infinity. As discussed in the introduction, this is precisely the situation in which one
expects an instability associated with the negative energy in matter fields within the ergore-
gion becoming increasingly negative. We have found that outgoing phase leads to stable
quasinormal modes rather than an instability. However, these boundary conditions are un-
physical: we are arranging that an initial wavepacket (at finite r) composed of modes with
positive ω,m does not propagate to r = −∞ by sending in an appropriate (finely tuned)
wavepacket from r = −∞ to scatter with it in such a way as to produce only a wavepacket
propagating to r = +∞. This is analogous to boundary conditions for a Kerr black hole
in which one arranges that initial data leads to no waves crossing the future horizon by
sending in appropriate waves from the past horizon. Presumably, the fine-tuning is the
reason that we do not see an instability here.

Now consider the physical boundary conditions corresponding to “outgoing” defined
with respect to the group velocity. Assume that Re(ω) > 0 and m > 0. BH showed that,
under these conditions, the phase and group velocities have the same sign for r → ∞ but
opposite sign for r → −∞. Hence the boundary conditions that we need are C+ = D− = 0.
In fact, the same holds for Re(ω) < 0 and m > 0 (see appendix B). Using the identity
Γ(z)Γ(1− z) = π/ sin(πz), we find that the quantization condition is

sin(πb) sin[π(c− a)]e−iπc = sin(πa) sin[π(c− b)]eiπc, (2.36)

which gives5

ω = n+
1
2
− i

2π
log
[

cosh[π(η̃/2 +m)]
cosh[π(η̃/2−m)]

]
, n ∈ Z, (m > 0) (2.37)

where we have specialized to scalar field (s = 0) or gravitational (±2) perturbations for
simplicity. Repeating the analysis for m < 0 requires C− = D+ = 0. The general result is

ω = n+
1
2
− i

2π
log
[

cosh[π(η̃/2 + |m|)]
cosh[π(η̃/2− |m|)]

]
, n ∈ Z (2.38)

We see that Im(ω) < 0 hence these are stable quasinormal modes. So NHEK is stable
against linearized gravitational (and scalar field) perturbations.

5A solution corresponding to c taking integer values is ruled out for the reason discussed in footnote 4.
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3 Metric perturbations

3.1 Hertz potentials

The NP scalar perturbations Ψ(s) are useful because they are invariant under infinitesimal
diffeomorphisms and under rotations of the NP tetrad. Many physically interesting quanti-
ties can be computed directly from the knowledge of these NP fields [12, 13, 21]. However,
in some problems as is our case, we really need to know the perturbations of the metric
itself, hµν , or the perturbations of the Maxwell or Weyl fermionic vector fields, respectively
Aµ and χµ. Cohen and Kegeles [15, 17], and Chrzanowski [16] have proposed a unique map
that provides the hµν , Aµ or χµ perturbations given the so-called Hertz potential Ψ(s)

H (see
a good discussion also in [19]). Wald proved Cohen-Kegeles−Chrzanowski’s results [18].
See appendix C for a detailed discussion of these works. The main conclusion is that the
Hertz potential also obeys a pair of decoupled equations, again one for positive and the
other for negative s. These are written in equations (C.18) and (C.19).

For gravitational perturbations, this method yields the metric perturbation in a partic-
ular gauge: the ingoing (outgoing) radiation gauge IRG (ORG), specified by the conditions

`µhµν = gµνhµν = 0 (IRG), nµhµν = gµνhµν = 0 (ORG). (3.1)

At first sight, these gauge conditions appear overdetermined but it has been shown that,
for perturbations of a type II vacuum spacetime, there is a residual gauge freedom that
allows one to impose the IRG provided that `µ`νTµν = 0 where ` is the repeated principal
null direction and Tµν the stress-tensor of any matter perturbation present [25]. Similarly,
for type D one can impose either the IRG or the ORG (if nµnνTµν = 0). The spin of the
Hertz potential corresponds to these two different gauges: the metric perturbation in the
IRG (ORG) is obtained from the Hertz potential with s = −2 (s = +2). The two Hertz
potentials contain exactly the same physical information, so one need only work with one
of them.

For vacuum type D spacetimes, the Hertz potential itself satisfies a master equation.
For the Kerr solution, this master equation turns out to be exactly the same as for the orig-
inal NP scalars Ψ(s), equation (2.5), with no source term on the RHS [26]. We have checked
that the same is true for NHEK. More concretely, Ψ(s)

H = {Ψ(−2)
H ,Ψ(−1)

H ,Ψ(−1/2)
H } are the

Hertz potentials conjugate to the positive spin Teukolsky perturbations {Ψ(2),Ψ(1),Ψ(1/2)}
but satisfy exactly the same master equation (2.5) as (−Ψ2)−

2s
3 Ψ(s) for negative spin.

Similarly, Ψ(s)
H = {Ψ(2)

H ,Ψ(1)
H ,Ψ(1/2)

H } are the Hertz potentials conjugate to the negative
spin Teukolsky perturbations {Ψ(−2),Ψ(−1),Ψ(−1/2)} but the positive spin Hertz potential
(−Ψ2)−

2s
3 Ψ(s)

H obeys the same master equation as Ψ(s) for positive spin. In short, the Hertz
potential obeys the same master equation as its conjugated Teukolsky field but with spin
sign traded. This relation is better clarified if we use tables 1 and 2.

Assuming perturbations for the Hertz potentials of the form

Ψ(s)
H =

{
e−iωteimφRlmω(r)Slm(θ) , s ≤ 0 ,
e−iωteimφRlmω(r)Slm(θ) (−Ψ2)−

2s
3 , s ≥ 0 ,

(3.2)
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Ψ(s)
H Ψ(−2)

H0
(−Ψ2)−

4
3 Ψ(2)

H4
Ψ(−1)

H0
(−Ψ2)−

2
3 Ψ(1)

H2
Ψ(−1/2)

H0
(−Ψ2)−

1
3 Ψ(1/2)

H1
Φ

s −2 2 −1 1 −1
2

1
2 0

Table 2. Spin s Hertz fields Ψ(s)
H that satisfy the master equation (2.5) with no source term.

where Rlmω(r) further satisfies (2.11), equation (2.5) separates into an angular and radial
equations. The angular equation is (2.7) with C = m/2, and the radial equation is (2.12).
Its solution is given by (2.26).

As stated above, given the Hertz potential for the gravitational field there is a unique
map between it and the metric perturbations [15–18]. A similar map exists between the spin
s = ±1,±1/2 Hertz potentials and the Maxwell and Weyl fermionic vector perturbations,
but we leave the discussion of these cases to appendix C. In the ingoing radiation gauge
the metric perturbation in NP notation is given by (see appendix C)

hIRGµν =
{̀

(µmν) [(D+3ε+ε− ρ+ρ)(δ+4β+3τ)+(δ+3β − α− τ − π)(D+4ε+3ρ)]

−`µ`ν(δ+3β+α− τ)(δ+4β+3τ)−mµmν(D+3ε− ε− ρ)(D+4ε+3ρ)
}

ΨH+c.c. ,

(3.3)

and a similar correspondence exists between the Hertz potential and the metric pertur-
bations hORGµν in the outgoing radiation gauge. (See the second relation of (C.10).) One
can check that (3.3) indeed satisfies the linearized Einstein’s equations for a traceless met-
ric perturbation:

−∇α∇αhµν − 2Rµανβhαβ + 2gαβ∇(µ∇|α|hν)β = 0 . (3.4)

3.2 Behaviour of solutions

The basis vector fields ` and n are globally well-defined. However, the vector field m is
singular at θ = 0, π. Nevertheless, one can check that angular dependence of the Hertz
potential contains a sufficiently high power of sin θ to ensure that the above metric pertur-
bation is smooth at θ = 0, π.

The asymptotic behaviour of the Hertz potential Ψ(±2)
H can be obtained using (2.11)

and (2.19). Use of (3.3) yields then for the asymptotic hµν behaviour (rows and columns
follow the order: {t, r, θ, φ})

hIRGµν ∼ r
3
2
± 1

2
η


O(1) O( 1

r2
) O(1

r ) O(1
r )

O( 1
r4

) O( 1
r3

) O( 1
r3

)
O( 1

r2
) O( 1

r2
)

O( 1
r2

)

 , (3.5)

where η is given by (2.20). Exactly the same result is obtained in the outgoing radiation
gauge. In (3.5) we have not imposed any boundary condition. These were discussed in
subsection 2.5; e.g., for η2 > 0, the lower sign would correspond to normal modes.
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We shall now compare the above asymptotic behaviour of metric perturbations with
the GHSS fall-off conditions. The tr and tθ components are the most restrictive. For these
to satisfy the fall-off conditions, η must be real, so traveling waves are excluded, we must
use normalizable boundary conditions (i.e. the lower sign choice) and we need η ≥ 3. Recall
that there are normal modes with η = 2.74, so it appears that the GHSS fall-off conditions
exclude some of the normal modes.6

As emphasized in the introduction, at the nonlinear level, we expect that interactions
will lead to modes corresponding to traveling waves (η2 < 0) being excited, which would
lead to a violation of the GHSS fall-off conditions. The only modes that escape this
conclusion are the axisymmetric ones (which have with η = 2l + 1), which always obey
the GHSS boundary conditions. Axisymmetric modes form a consistent truncation of the
full set of modes in the sense that linearized axisymmetric modes will not excite non-
axisymmetric modes at next order in perturbation theory.

3.3 The energy

3.3.1 Massless scalar field

We want to compute the energy associated with the gravitational perturbations that we
found in the previous subsection. Since this will involve a rather lengthy calculation, we
shall start with the conceptually simpler case of a massless complex scalar field:

�Φ = 0. (3.6)

The canonical energy momentum tensor is given by

Tµν = ∇(µΦ∇ν)Φ
∗ − 1

2
ḡµν∇αΦ∇αΦ∗. (3.7)

Let Σ be a spacelike hypersurface with future-directed unit normal nµ. Then, given any
Killing vector ξµ, we can define the associated conserved charge

Qξ[Φ] =
∫

Σ
d3x
√
−γ Tµνnµξν , (3.8)

where γµν = ḡµν − nµnν is the induced metric on Σ. We shall choose Σ to be a surface of
constant t in the NHEK geometry. The conserved charges of interest are the energy E , for
ξ = ∂/∂t, and the angular momentum J , for ξ = −∂/∂φ. (The latter is the U(1) charge
of GHSS.) Written out explicitly, these are

E = M2

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
−∞
dr

[
|∂tΦ|2

1+r2
+
(
1+r2

)
|∂rΦ|2 + |∂θΦ|2+

(
1

Λ(θ)2
− r2

1+r2

)
|∂φΦ|2

]
,

J = M2

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
−∞

dr
1

1+r2

[
2r |∂φΦ|2 − (∂tΦ∂φΦ∗ + ∂tΦ∗∂φΦ)

]
. (3.9)

6It is conceivable that a gauge transformation could be used to bring a mode violating the fall-off

conditions to one that satisfies these conditions but this seems unlikely, especially for traveling waves.
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In the energy integrand, all the terms except the last are manifestly positive. The last is
proportional to |∂t|2 = gtt and thus is positive only outside the ergosphere where 1 + r2 −
r2Λ(θ)2 > 0. The energy can thus be negative (for a rigorous proof of this, see ref. [5]).

Consider a general superposition of normalizable modes (recall that n is defined by the
frequency quantization (2.32)):

Φ(x) =
∑
nlm

(anlmΦnlm(x) + bnlmΦnlm(x)∗) . (3.10)

First, we shall show that the conserved charges associated with such a solution can be
decomposed into a sum of conserved charges of the individual modes.

A charge integral Qξ[Φ] can be regarded as defining a (typically indefinite) norm on
the space of solutions of the wave equation. Given a norm ||, it can be “polarized” to
obtain a Hermitian scalar product (, ): the real and imaginary parts of (u, v) are given by
(|u + v| − |u| − |v|)/2 and (|iu + v| − |u| − |v|)/2 respectively. In our case, polarizing the
charge integral defines a scalar product (Φ1,Φ2)ξ, antilinear in Φ1 and linear in Φ2. Since
the norm is conserved, so will be the scalar product. Note that (Φ,Φ)ξ = Qξ[Φ].

We shall now argue that modes with different (nlm) are orthogonal with respect to
this scalar product. The scalar product has the form

(Φ1,Φ2)ξ =
∫

Σ
d3xQµν(x)∂µΦ∗1∂νΦ2, (3.11)

where Qµν is preserved by any Killing vector field that commutes with ξ. Now let η be
such a Killing field. We can then write

(Φ1,−iLηΦ2)ξ − (−iLηφ1, φ2)ξ =
∫

Σ
Lη(Qµν(x)∂µΦ∗1∂νΦ2). (3.12)

If the RHS vanishes then this shows that −iLη is self-adjoint with respect to the this scalar
product. For NHEK, we take ξ = ∂/∂t or ∂/∂φ. Taking η = ∂/∂t, the RHS vanishes
because the scalar product is conserved, and hence independent of t. Taking η = ∂/∂φ, the
RHS vanishes because it is a total derivative on Σ. It follows that modes with different ω or
diffferent m will be orthogonal with respect to this scalar product. Hence, in calculating the
charge associated with (3.10), there are no cross-terms in the charge arising from modes
with different ω or m (in particular, there are no cross-terms between the positive and
negative frequency parts of (3.10)).

Now consider the l-dependence. Since l is not associated with a Killing symmetry of the
background, we cannot use the above argument. Instead, for separable solutions, the angu-
lar dependence will be given by (2.7) with s = 0. This equation is self-adjoint, so two solu-
tions with different values of Λ(s)

lm will be orthogonal with respect to the measure sin θ, i.e.,∫ π

0
dθ sin θ S(s)

l1m
(θ)S(s)

l2m
(θ)∗ ∝ δl1l2 . (3.13)

Fortunately, it turns out that sin θ is precisely the measure that arises in the scalar products
associated with the energy and angular momentum.
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From these results, we see that no cross-terms between modes with different (nlm)
contribute to the energy and angular momentum. Substituting (3.10) into (3.8) for ξ = ∂t
gives the energy as a sum over contributions from individual modes:

E =
∑
nlm

Enlm(|anlm|2 + |bnlm|2), (3.14)

where

Enlm ≡ 4πM2ωnlm

∫ π

0
dθ sin θ|S(0)

lm (θ)|2
∫ +∞

−∞
dr|R(0)

nlm(r)|2ωnlm +mr

1 + r2
. (3.15)

Note that Enlm is manifestly positive only when m = 0. However, we have evaluated the
radial integral above for many cases, namely for 0 ≤ l ≤ 10, −l ≤ m ≤ l and 0 ≤ n ≤ 10.
In all these cases, it is positive. Hence, for a massless complex scalar field in the NHEK
geometry, the energy of an arbitrary superposition of normalizable modes is positive.

The angular momentum can be similarly decomposed:

J =
∑
nlm

Jnlm(|anlm|2 − |bnlm|2), (3.16)

where we find the simple result
Jnlm
Enlm

=
m

ωnlm
. (3.17)

3.3.2 Gravitational perturbations

The energy of gravitational perturbations is calculated from the Landau-Lifshitz “pseu-
dotensor” defined as follows. Consider metric perturbations hµν around NHEK up to
second order in the amplitude,

gµν = ḡµν + hµν = ḡµν + h(1)
µν + h(2)

µν +O(h3), (3.18)

The linearized Einstein equation is7

G(1)
µν [h(1)] = 0 . (3.19)

At second order, the Einstein equation relates terms linear in h(2) to terms quadratic in h(1):

G(1)
µν [h(2)] = −G(2)

µν [h(1)] ≡ 8πGTµν [h(1)] , (3.20)

where the RHS is quadratic in h(1). Written out explicitly, for traceless perturbations it
reads (here, we use the notation hµν ≡ h(1)

µν )

8πGTµν = −1
2

[
1
2

(∇µhαβ)∇νhαβ + hαβ (∇ν∇µhαβ +∇α∇βhµν −∇α∇µhνβ −∇α∇νhµβ)

+∇αhβµ (∇αhβν −∇βhαν)−∇αhαβ (∇µhβν +∇νhµβ −∇βhµν)
]

+
1
4
ḡµν

[
1
2

(∇γhαβ)∇γhαβ + hαβ (∇γ∇γhαβ − 2∇α∇γhγβ)

+∇αhβγ
(
∇αhβγ −∇βhαγ

)
− 2

(
∇αhαβ

)
∇γhβγ

]
. (3.21)

7Written out, this takes the standard Lichnerowicz form. If we assume that h(1) is traceless then this

equation reduces to (3.4).
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We now define the conserved charges Qξ[h(1)] associated with the first order perturba-
tion exactly as in (3.8) with ξ = ∂/∂t, −∂/∂φ giving the energy and angular momentum
respectively.

Recall that h(1) is related to the Hertz potential by equation (3.3), which is second
order in derivatives. It follows that the conserved charges are given by integrals of quantities
that are sixth order in derivatives. Hence calculating these charges involves very lengthy
calculations, which we have performed using computer algebra.

We consider a Hertz potential corresponding to an arbitrary superposition of nor-
mal modes:

Ψ(s)
H (x) =

∑
nlm

(
anlmΨ(s)+

nlm (x) + bnlmΨ(s)−
nlm (x)

)
, (3.22)

where s = ±2 and the superscript ± refers to positive and negative frequency respectively.
As in the scalar field, case the conserved charges can be used to define a scalar product

(, )ξ between solutions of the linearized Einstein equation. The only significant difference
here is that the metric perturbation is real, so the scalar product will also be real.8 One
can argue exactly as in the scalar field case that Lη is anti-self-adjoint with respect to
this scalar product if η is a Killing field that commutes with ξ: (h,Lηk) = (−Lηk, h). It
follows that the operator −L2

η is self-adjoint and hence linearized metric perturbations with
different ω2 or different m2 must be orthogonal.

Given the complexity of the charge integrals, we have not succeeded in demonstrating
that modes with different l are orthogonal in the same way that we did for the scalar field.
However, note that ω depends on l in a very complicated way (through the eigenvalues Λ(2)

lm

which must be found numerically). Hence it seems very unlikely that modes with different
l could have the same ω2. Therefore the orthogonality of modes with different ω2 should
ensure the orthogonality of modes with different l. An exception are the axisymmetric
(m = 0) modes, which have ω = n + l + 1 so modes with the same n + l have the same
ω. However, the axisymmetric modes are the “least dangerous” as far as the possibility of
negative energy is concerned so we shall not worry about this further, and simply assume
that all modes with different l will be orthogonal.

We now turn to our calculation of the conserved charges associated with individual
modes. These charges are most easily computed in NP tetrad, since this is the basis in
which the metric perturbation takes the relatively simple form (3.3), although the explicit
expressions for the components are still too long to be written here. Using Mathematica,
the separated equation of motion can be used to reduce the integrands of the charge
integrals to expressions first order in derivatives, which were then calculated numerically
using Mathematica’s NIntegrate function.

We have calculated the energy of normal modes with l = 2, 3, 4, 5, 6 for all allowed
values of m, n = 0, 1, 2, 3, 4, 5, 6 and both positive and negative frequency. In all cases it
comes out positive. This is the main result of this section.

8The polarization formula is (u, v) = (1/2)(|u+v|−|u|−|v|). We could have chosen to work with complex

modes hµν , for which the negative frequency modes are complex conjugates of the positive frequency modes.

However, then we would have had to take account of two different polarizations for the gravitational modes.
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Figure 3. Ratio of the conserved charges J /E for spin |s| = 2 perturbations as a function of the
azimuthal angular number m for a) l = 2 and b) l = 3. We only consider normal modes, i.e., values
of m that yield η2 > 0 as defined in (2.20). Data points corresponding to n = 0, 1, 2 are plotted,
with the solid line representing n = 2 and the dashed line n = 0.
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Figure 4. Ratio of the conserved charges J /E for spin |s| = 2 perturbations as a function of the
azimuthal angular number m for a) l = 4 and b) l = 6.

The only difference between positive and negative frequency modes is the sign of J
so we focus on the positive frequency case. The numerical value of the energy depends
on the normalization of the Hertz potential. However, the ratio of the conserved charges,
Jnlm/Enlm is normalization independent. This ratio as a function of m and n for fixed l is
displayed in figures 3–4. Note that Jnl(−m) = −Jnlm and that Enl(−m) = Enlm. Moreover,
for any given l the ratio |J |/E always has a (non-vanishing) minimum at |m| = |s| = 2
(the ratio decreases with n but only slowly, so this is not apparent in the plots). The
corresponding modes also exhibit special behaviour in the Kerr geometry: Teukolsky and
Press [23] found that for a given black hole rotation and wave frequency, the modes whose
energy is most absorbed or superradiantly amplified are precisely those with l = |m| = |s|.
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4 Discussion: second order perturbations

We now turn to the question of what happens if we go beyond first order in perturbation
theory. The second order metric perturbation h(2) is determined by solving (3.20).9 We are
not going to attempt to solve this equation. Instead, following recent work on TMG [27]
we consider the conserved charges.

So far, we have worked with conserved charges defined via bulk integrals quadratic in
h(1). However, one can also define conserved charges via boundary integrals, indeed these
are the charges discussed by GHSS. So first we shall explain how they are related to our bulk
integrals. Consider a 1-parameter family of exact vacuum solutions g(λ), where g(0) ≡ ḡ

is the NHEK metric. Let h(1) = g′(0) and h(2 = (1/2)g′′(0). (h(1) is the linearized solution
arising from the linearization of g(λ), h(2) is the second order correction.) Owing to the
unusual fall-off conditions, the conserved charge Qξ(λ) ≡ Qξ[g(λ)] associated to a generator
ξ of the asymptotic symmetry group are defined by integrating the following expression:

dQξ
dλ

= Qξ[g′(λ), g(λ)] (4.1)

where

Qξ[h, g] ≡ − 1
32πG

∫
∂Σ
εαβµν

[
ξν∇µh− ξν∇σhµσ + ξσ∇νhµσ +

1
2
h∇νξµ − hνσ∇σξµ

+
1
2
hσν(∇µξσ +∇σξµ)

]
dxα ∧ dxβ . (4.2)

Now, our gravitational normal modes decay sufficiently fast that they give Qξ[h(1), ḡ] = 0,
hence dQξ/dλ = 0 at λ = 0. This is no surprise since we know that the energy should
be quadratic in h(1). Hence we have to go to next order, and calculate (1/2)d2Qξ/dλ

2 at
λ = 0. This can be done by differentiating (4.1), which gives a sum of a part linear in h(2),
equal to Qξ[h(2), ḡ], and a part quadratic in h(1). However, the normal modes decay so fast
that this second part vanishes. Hence, to second order in λ, we have that

Qξ(λ) = λ2Qξ[h(2), ḡ]. (4.3)

Now, assuming that ξ is a Killing field of the background, a standard manipulation [28–
30] based on the second-order Einstein equation (3.20) enables one to rewrite this surface
integral as the bulk integral quadratic in h(1) that we used in the previous section.

One subtlety is that the NHEK geometry has two boundaries (at r = ±∞). The bulk
integral for the charge will be the sum of the two surface integrals. Hence, if the first order
perturbation gives a non-zero conserved charge, then the second order perturbation h(2)

must decay sufficiently slowly for these surface integrals to be non-zero.
Consider initial data (say at t = 0) for a first order perturbation h(1) that is of compact

support (this will necessarily involve harmonics (l,m) corresponding to traveling waves).
How will the second order perturbation sourced by this first order perturbation behave?

9If we considered scalar field perturbations then the gravitational backreaction of the perturbation would

be governed by the same equation with Tµν the scalar field stress tensor.
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Near infinity (at least at early times), h(2) must satisfy the source free linearized Einstein
equation, i.e., the same equation as the first order perturbation. Hence the behaviour of h(2)

near infinity should be the same as that of a first order perturbation. However, none of the
first order normal modes decays sufficiently slowly to make a non-vanishing contribution
to the surface integrals for the charges, e.g., a non-vanishing contribution to the energy
would require η ≤ 1 in (3.5) (with the lower sign choice) whereas we have seen that normal
modes have η > 2.74. A non-vanishing contribution to the angular momentum requires
η ≤ −1. Therefore h(2) does not behave like a normal mode at infinity. Furthermore, even
the traveling waves decay too slowly to contribute to the surface integral for the angular
momentum. So what linearized solution does h(2) behave like near infinity?

Precisely the same issue arises for a Kerr black hole. Gravitational perturbations with
l ≥ 2 decay too fast to contribute to the surface integrals for the energy or angular mo-
mentum. For Kerr, the resolution is that the Teukolsky or Hertz potential formalisms miss
certain modes, specifically those modes that preserve the type D condition to first order.
For Kerr, it has been shown that the only such perturbations correspond to deformations
towards a nearby type D solution [31]. The nearby solutions are: the Kerr solution with
different (M,J), the Kerr-NUT solution, and the spinning C-metric. The latter perturba-
tions are excluded by asymptotic boundary conditions or regularity. Hence, for Kerr, one
must add by hand the non-dynamical modes corresponding to infinitesimal variations in
the mass and angular momentum of the black hole, which we can regard as l = 0 and l = 1
perturbations respectively. Clearly these will decay at an appropriate rate to contribute to
the surface integrals.

This suggests that, in our case, the fall-off of h(2) will be the same as that of linearized
modes that preserve the type D property. There are two classes of such modes: (i) modes
that are locally gauge, i.e., locally of the form ∇(µην), and (ii) modes corresponding to a
non-trivial deformation towards a type D solution continuously connected to NHEK.

Consider first the case that h(2) behaves asymptotically as a linearized mode that is
locally gauge. By this we mean that, in a neighbourhood of the S2 on which a boundary
integral is computed, h(2) is locally, but not globally, of the form ∇(µην).10 This is precisely
what happens for Einstein gravity in AdS3, for example, where ηµ cannot be globally
defined on the S1 boundary. Could the same thing happen here? One might consider
infinitesimal diffeomorphisms of the GHSS form ε(φ)∂/∂φ − ε′(φ)r∂/∂r and, instead of
taking ε to be periodic in φ (which would be globally defined), take ε(φ) = φ, which leads
to a metric perturbation independent of t and φ. However, this has the effect of introducing
a conical singularity into the metric near infinity (at the poles of the S2), which does not
seem appropriate.

This “locally gauge” behaviour would arise from solutions that are obtained by iden-
tifications of the NHEK background (in the same way that the BTZ black hole is obtained
as an identification of AdS3). Could one obtain a “NHEK black hole” by identifying the
NHEK geometry in some way? Assuming any such identification acts only on the surfaces
of constant θ, the possibilities have been well-studied [32], and there appears to be no
candidate free of pathologies such as conical singularities or closed timelike curves.

10If it were globally a gauge transformation then it would give a vanishing boundary integral since, for

a Killing field ξ, Qξ[h, ḡ] is invariant under hµν → hµν +∇(µην) (even if η is a non-trivial element of the

asymptotic symmetry group).
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Consider then, the second possibility, that h(2) behaves asymptotically as a linearized
mode corresponding to a deformation towards a nearby type D solution. What solutions
are there? Using Kinnersley’s classification of type D solutions [33], the only such solutions
appear to be: NHEK with a change in the angular momentum, the full (asymptotically
flat) Kerr solution, or the near-horizon geometry of the extremal spinning C-metric. The
latter has a conical singularity and so presumably must be excluded.

It appears that the only candidate for a “l = 1” mode, i.e., a mode contributing to the
surface integral for angular momentum, is the perturbation that corresponds to a change
in the angular momentum of the NHEK geometry (J → J + δJ in (2.1)). This violates the
GHSS fall-off conditions. Hence it would appear that, at second order, any perturbation
with non-vanishing angular momentum is excluded by the fall-off conditions.

What about the energy? One can attempt to obtain a solution with non-zero energy
by taking a decoupling limit of the near-extremal Kerr solution at fixed temperature and
angular momentum. An analogous decoupling limit of Reissner-Nordström was discussed
in ref. [34]. However, in the latter case, it was shown that, even with non-zero temperature,
the decoupling geometry is simply AdS2 × S2. We find that the same is true for Kerr: in
appendix D, we show that the decoupling limit at fixed non-zero temperature leads back
to the NHEK geometry. The explanation is presumably the same as in ref. [34], namely
that the extreme Kerr black hole has a mass gap.

It appears that the only regular modes with non-zero energy correspond to going to
next order in the decoupling limit. This is probably equivalent (up to a SL(2,R) transfor-
mation) to retaining the next to leading order term in the near-horizon limit leading from
extreme Kerr to NHEK. This clearly gives a solution k(1) of the linearized Einstein equa-
tion. However, it violates the GHSS fall-off conditions, indeed at the fully nonlinear level it
amounts to considering an asymptotically flat black hole rather than its near-horizon limit.

If correct, this implies that, if the first order perturbation has any non-zero energy
(whether positive or negative) or angular momentum then at second order there will be a
violation of the GHSS fall-off conditions.11 This would be a satisfying conclusion: one does
not have to worry about negative energy initial data, and the positive energy condition
is redundant (at least in perturbation theory). What about initial data for a linearized
gravitational field with vanishing energy and angular momentum? There certainly exists
initial data with this property. We have seen that the normal modes have positive energy, so
this data must involve traveling waves. With outgoing boundary conditions, the linearized
theory predicts that these will disperse, leaving behind only normal modes, with positive
energy. If this extends to the nonlinear theory then there still would be a problem since the
final state would have to violate the fall-off conditions. It seems to us that the only solution
is that, even though this initial data has vanishing energy, the two boundary integrals for
the energy would be non-zero, but opposite in sign. Hence one would still obtain h(2) with
the asymptotic behaviour just discussed, and thereby violate the fall-off conditions.

11If one wanted to impose these fall-off conditions only at r → ∞ but didn’t care what happened at

r → −∞ then one could always add to h(2) an appropriate multiple of k(1) to arrange this, because k(1)

satisfies the linearized Einstein equation, and one is free to add to h(2) (which satisfies the inhomoge-

neous equation (3.20)) any solution of the linearized Einstein equation. Note that the boundary integrals

associated with any solution of the linearized Einstein equation, e.g. k(1), must sum to zero.
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This reasoning suggests that, at the nonlinear level, there are no non-trivial (i.e. non-
isometric to NHEK) solutions of the Einstein equation that are continuously connected to
NHEK, and satisfy the GHSS fall-off conditions (see ref. [34] for a proof of a similar result
for AdS2×S2). This may imply that the only solutions that satisfy the latter are related to
NHEK by large gauge transformations. However, in this case, the dual CFT would consist
purely of conformal descendents of the vacuum, which leads to a problem with modular
invariance. Alternatively, there might be further solutions that are asymptotic to NHEK
in the GHSS sense, but not continuously connected to it. If so, it would be interesting to
find these solutions.
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A Shear-free null geodesics and NP tetrad for NHEK

A.1 NP quantities for NHEK in global coordinates

NHEK is a Petrov type D geometry and its NP null tetrad is found by looking into the
congruence of shear-free null geodesics [21].

Geodesics are the paths that minimise the action associated with the Lagrangian

L =
1
2
gµν

dxµ

dλ

dxν

dλ
=
δ

2
, (A.1)

where λ is an affine parameter, and δ = 0, 1, respectively, for null and time-like geodesics.
Since the NHEK geometry (2.1) is stationary, the energy E and angular momentum L of
the particle,

pt = gttṫ+ gtϕϕ̇ ≡ E , pϕ = gtϕṫ+ gϕϕϕ̇ ≡ L , (A.2)

are conserved in a geodesic motion, where pµ ≡ dL
dxµ is the conjugated momentum. Equa-

tion (A.2) yields

ṫ =
E − Lr

M2(1 + cos2 θ)(1 + r2)
, ϕ̇ = − r(E − Lr)

M2(1 + cos2 θ)(1 + r2)
− L

4M2

1 + cos2 θ

sin2 θ
. (A.3)

The Hamilton-Jacobi equation for the geodesic motion on a geometry gµν reads

∂S

∂λ
= H

(
xµ,

∂S

∂xµ
, λ

)
, H

(
xµ,

∂S

∂xµ
, λ

)
=

1
2
gµν

∂S

∂xµ
∂S

∂xν
. (A.4)
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Assuming a separation ansatz of the form

S =
1
2
δλ+ Et+ Lϕ+ Sr(r) + Sθ(θ) , (A.5)

equation (A.4) for the NHEK boils down to(
∂Sθ
∂θ

)2

= Θ(θ) , Θ(θ) ≡ Λ− L2

(
1 + cos2 θ

)2
4 sin2 θ

−M2δ cos2 θ ;

(1 + r2)2

(
∂Sr
∂r

)2

= R(r) , R(r) ≡ (E − rL)2 − (Λ +M2δ)(1 + r2) ; (A.6)

where Λ is the separation constant. Typically one has ṙ2 ∝ R(r) and θ̇2 ∝ Θ(θ) and the
conservation equations (A.3) give the remaining equations for ṫ and ϕ̇.

The shear-free principal null geodesics are found by requiring θ̇ ∝ Θ(θ) = 0 for δ = 0,
which in our case requires

Λ = L2

(
1 + cos2 θ0

)2
4 sin2 θ0

, (A.7)

for a constant θ = θ0. Moreover, these geodesics must also keep ṙ, i.e.,

R = (E − rL)2 − (1 + r2)L2

(
1 + cos2 θ0

)2
4 sin2 θ0

(A.8)

constant along the motion. Clearly this is possible for any r and θ0 only if L = 0. The
energy and angular momentum conservation equations (A.3) then require

M2(1 + cos2 θ0)ṫ =
E

1 + r2
, M2(1 + cos2 θ0)ϕ̇ = − rE

1 + r2
. (A.9)

This Hamilton-Jacobi analysis then concludes that shear-free null geodesics have the tan-
gent vectors

`µ∂µ =
1

1 + r2
∂t + ∂r −

r

1 + r2
∂ϕ ,

nµ∂µ =
1

4M2Ω2(θ)
(
∂t − (1 + r2)∂r − r∂ϕ

)
, (A.10)

that we choose for the real vectors of the NP tetrad since they satisfy the appropriated
relations in (A.16). In particular, the normalisation factor for nµ was chosen to satisfy the
normalisation condition ` · n = 1.

We can now check that (A.10) are indeed null geodesic generators and in our way we
find Carter’s constant of motion for the NHEK. With the NP tetrad choice (2.3) we find
the Weyl scalars (2.4) and NHEK is then Petrov type D. In such a spacetime, if we take
kµ = (ṫ, ṙ, θ̇, ϕ̇) to be an affinely parametrised geodesic, kµ∇µkν = 0, then [21]

K = 2|Ψ2|−2/3(k · `)(k · n)−Q|k|2

= 2|Ψ2|−2/3(k ·m)(k ·m)−
(
Q− |Ψ2|−2/3

)
|k|2 , (A.11)
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is conserved along k if and only if a scalar Q exists which satisfies the equations

DQ = D|Ψ2|−2/3 , ∆Q = ∆|Ψ2|−2/3 , δQ = δ∗Q = 0 . (A.12)

In our case, from (2.4), one has |Ψ2|−2/3 = M4/3
(
1 + cos2 θ

)
. The scalar Q = M4/3

satisfies (A.12) and we can then construct the two conserved Carter quantities (A.11).
This yields the pair of equations

M2
(
1 + cos2 θ

)2
θ̇2 = −L2

(
1 + cos2 θ

)2
4 sin2 θ

−M2
(
δ cos2 θ −K

)
,

M2
(
1 + cos2 θ

)2
ṙ2 = (E − rL)2 −M2(δ +K)(1 + r2) , (A.13)

whose RHS is, respectively, Θ(θ) and R(r) defined in (A.6) if we identify Λ ≡ M2K.
Carter’s equations (A.13), combined with the energy and angular momentum conservation
equations (A.3), reduce the finding of geodesics in NHEK to a quadrature problem.

If we want shear-free null geodesics we demand δ = 0 and θ̇ = 0 which implies the
relation (A.7). The radial equation then stays

M2
(
1 + cos2 θ0

)2
ṙ2 = (E − rL)2 − (1 + r2)L2

(
1 + cos2 θ0

)2
4 sin2 θ0

, (A.14)

which can be independent of r only for L = 0. Inserting this condition in (A.3) yields (A.9),
and under the redefinition E → E

(
1 + cos2 θ0

)
we finally confirm that shear-free null

geodesics are those that satisfy

ṫ =
E

1 + r2
, ṙ = ±E , θ̇ = 0 , ϕ̇ = − r

1 + r2
E . (A.15)

These two geodesics give us the null NP vectors ` and n as well as the Eddington-Finkelstein
coordinates for the NHEK. The NP tetrad is completed with the introduction of the com-
plex conjugate pair of vectors mµ and mµ as defined in (2.3). These are found requiring
that the NP tetrad satisfies the normalization and orthogonality conditions

` ·m = ` ·m = n ·m = n ·m = 0,

` · ` = n · n = m ·m = m ·m = 0,

` · n = 1, m ·m = −1. (A.16)

In terms of the NP tetrad, the metric components read

gµν = 2`(µnν) − 2m(µmν) . (A.17)

The 12 complex spin coefficients are introduced through linear combinations of the 24
Ricci rotation connection coefficients γcab = e µ

(c) e
ν

(b)∇νe(a)µ,

κ = γ311 = 0, σ = γ313 = 0, ν = γ242 = 0, λ = γ244 = 0, ε =
1
2

(γ211+γ341) = 0,

µ = γ243 = 0, ρ = γ314 = 0, γ =
1
2

(γ212+γ342) =
r

2M2 (1+cos2 θ)
,

τ = γ312 = − i sin θ√
2M (1 + cos2 θ)

, α =
1
2

(γ214+γ344) = −
cos θ − i

(
2− cos2 θ

)
2
√

2M (1− i cos θ)2 sin θ
,

π = γ241 =
i sin θ√

2M (1− i cos θ)2 , β =
1
2

(γ213+γ343) =
cos θ

2
√

2M (1+i cos θ) sin θ
. (A.18)
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Their complex conjugates are obtained through the replacement 3 ↔ 4 in γcab. From the
Goldberg-Sachs theorem, κ = σ = ν = λ = 0 implies that the NHEK is Petrov type D (as
it must be by construction). Moreover, ε = 0 implies that ` is affinely parametrised as it
is indeed the case.

The Weyl tensor

Cµναβ = Rµναβ−
1
2

(gµαRνβ + gνβRµα − gναRµβ − gµβRνα)+
1
6

(gµαgνβ − gµβgνα) , (A.19)

reduces to the Riemann tensor because (2.1) is Ricci flat. The 5 complex Weyl scalars Ψi

in the NP formalism encode the information on the 10 independent components Cabcd of
the Weyl tensor,

Ψ0 = −C1313 = −Cµναβ `µmν`αmβ,

Ψ1 = −C1213 = −Cµναβ `µnν`αmβ,

Ψ2 = −C1342 = −Cµναβ `µmνmαnβ,

Ψ3 = −C1242 = −Cµναβ `µnνmαnβ,

Ψ4 = −C2424 = −Cµναβ nµmνnαmβ . (A.20)

For the NHEK these Weyl scalars are listed in (2.4).
The fundamental quantities in the NP formalism needed to study perturbations are

the spin coefficients listed in (A.18) and the directional derivative operators,

D = `µ∇µ , ∆ = nµ∇µ , δ = mµ∇µ , δ∗ = mµ∇µ . (A.21)

A.2 Master equation for NHEK in Poincaré coordinates

For completeness we write here the master equation for NHEK in Poincaré coordinates.
This is the counterpart of the global coordinate master equation (2.5).

Let quantities with tildes denote Boyer-Lindquist coordinates of the full black hole
solution (D.1), and take {τ, y, θ, ϕ} to be the Poincaré coordinates describing NHEK.

Bardeen and Horowitz define the near-horizon limit of the extreme Kerr solution by
setting [1]

r̃ = a+ λy, t̃ =
τ

λ
, φ̃ = ϕ+

τ

2aλ
, (A.22)

where a is the extreme value for the Kerr rotation parameter, and taking the limit λ →
0 with the untilded quantities held fixed. The limit yields the near-horizon solution in
Poincaré coordinates. Taking this limit in the Kinnersley tetrad [13], one finds that

λ` → 2a2

y

∂

∂τ
+

∂

∂y
− 1
y

∂

∂ϕ
,

λ−1n → 1
a2(1 + cos θ)

(
a2 ∂

∂τ
− y2

2
∂

∂y
− y

2
∂

∂ϕ

)
,

m → 1√
2a(1 + i cos θ)

(
∂

∂θ
+ i

(1 + cos2 θ)
2 sin θ

∂

∂ϕ

)
. (A.23)
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Hence, by performing a boost before taking the limit, we can ensure that the tetrad remains
well-defined and must therefore give a tetrad aligned with the principal null directions of
the near-horizon geometry.

Consider the Teukolsky equation for a field ψ of spin s in the extreme Kerr geome-
try [13]. Let

ψ = f(τ, y, θ, ϕ) = f

(
λt̃,

r̃ − a
λ

, θ, φ̃− t̃

2a

)
, (A.24)

Plugging this into the Teukolsky master equation [13], and taking λ → 0, we find that
it becomes

4a4

y2
∂2
τf −

4a2

y
∂τ∂ϕf +

(
2− 1

4
sin2 θ − 1

sin2 θ

)
∂2
ϕf − y−2s∂y

(
y2s+2∂yf

)
− 1

sin θ
∂θ (sin θ∂θf)− is

(
2 cos θ
sin2 θ

+ cos θ
)
∂ϕf −

4a2s

y
∂τf + (s2 cot2 θ − s)f = 0 (A.25)

This is the master equation governing perturbations of the near-horizon Kerr geometry
written in Poincaré coordinates.

We separate variables by setting

f(τ, y, θ, ϕ) = F (τ, y)S(θ)eimϕ. (A.26)

Equation (A.25) separates into an angular equation given by (2.7) with C = m/2 and into

4a4

y2
∂2
τF −

4a2(s+ im)
y

∂τF − y−2s∂y
(
y2s+2∂yF

)
+
(

Λ(s)
lm −

7m2

4

)
F = 0, (A.27)

where Λ(s)
lm is the constant of separation already discussed after (2.7).

B Phase and group velocities

In this appendix we give some details of the analysis done in subsection 2.5.2.
To discuss travelling waves and their phase and group velocities we need the next-to-

leading contribution to the asymptotic behavior (2.27). This is obtained applying to (2.26)
the transformation law z → 1/(1 − z) of the hypergeometric function and its asymptotic
expansion for large radial distances yielding,

Φ(s)
lmω ≈ 2(1+η)/2Γ(b− a)C±e±iπ(β−α−a)/2e

− 1+η
2

ln |r|− 2qω
1+η

1
r

+2(1−η)/2Γ(a− b)D±e±iπ(β−α−b)/2e
− 1−η

2
ln |r|− 2qω

1−η
1
r , (B.1)

where the amplitudes C± and D± are defined in (2.28).
Introduce the quantities

S±(r) = exp
[
i

(
±1

2
η̃ ln |r|+ 2ω (∓mη̃ + s)

1 + η̃ 2

1
r

)]
, η = iη̃ ,

k±(r) = −i ∂rS±(r)
S±(r)

. (B.2)
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C− D− C+ D+

vph Re(ω) > 0 > 0 < 0 < 0 > 0
vph Re(ω) < 0 < 0 > 0 > 0 < 0
vg m > 0 < 0 > 0 < 0 > 0
vg m < 0 > 0 < 0 > 0 < 0

Table 3. Phase and group velocities for the possible amplitudes choices in the asymptotic solu-
tion (2.27).

Here, S±(r) encodes the radial contribution to the wave propagation and, in a WKB
approximation to the traveling waves, k±(r) is the effective wavenumber of the wave. The
superscript ’+’ (’−’) is in correspondence with the amplitude C± (D±). The phase velocity
of the traveling wave is then

v±ph =
ω

k±(r)
' ±2ω r

η̃
, (B.3)

while the group velocity is

v±g =
(
dk±(r)
dω

)−1

= ±1
2

(1 + η̃2) r2

mη̃ ∓ s
. (B.4)

For 2 ≤ l ≤ 20 and the values of |m| ≤ l that yield η̃ > 0 we have checked that, in the
denominator of v±g , mη̃ ∓ s is positive for m > 0 and negative for m < 0.

Both at r = ±∞, depending on whether we choose the C± or the D± contributions
in (B.1), we can have the combinations for the sign of the phase and group velocities
displayed in table 3.

C Hertz map between Weyl scalar and metric perturbations

In this appendix we derive the map hµν(Ψ) between the Weyl scalars Ψ0,4 (that satisfy the
decoupled Teukolsky equations) and the metric perturbations hµν , as well as the map Aµ(φ)
between the NP complex scalars perturbations φ0,2 and the Maxwell perturbed vector
potential Aµ. We follow [18] and recover the results of [15–19] but we take the opportunity
to emphasize the importance of these works (not so well-known in the community) and to
give some details not presented in the original articles and to also pinpoint small typos in
some of these works that have propagated in the literature. We start by reviewing Wald’s
work [18] in the next subsection. Then we apply it to get hµν(Ψ) (subsection C.2), and to
find Aµ(φ) (subsection C.3). A similar analysis could be done to obtain the map for the
Weyl fermionic perturbations.

C.1 Problem statement. The Hertz potential map

Let us start by briefly reviewing the seminal work of Teukolsky [12, 13]. Suppose we wish
to solve the perturbation equation ε(h) = 0 where ε is a linear differential operator and
h is the field perturbation on which ε acts. For example, ε can be the Maxwell operator
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describing electromagnetic perturbations Aα, [∆E(Aα)]µ = 0, i.e., ∇νFµν = 0; or it can
be the gravitational operator describing gravitational perturbations hαβ, [∆G(hαβ)]µν = 0
written in (3.4).

Suppose now that:

• a new variable Ψ = LΨ(h), where LΨ is a linear differential operator, has been
introduced (these are e.g., the NP complex electromagnetic scalars φ0,1,2 or the Weyl
scalars Ψ0,...,4);

• a linear partial differential operator D has been found such that for all h one has

Dε(h) = OLΨ(h) = OΨ , (C.1)

where O is another partial differential operator.

Then
ε(h) = 0 ⇒ O(Ψ) = 0 . (C.2)

This is the main result of [12, 13], who found the variable Ψ and operators LΨ, D and O,
as well as the well-known decoupled Teukolsky equations (C.1), that describe the problem
of electromagnetic, Weyl fermionic and gravitational perturbations in the Kerr black hole.

So assume that we have carried on the previous steps that lead to (C.2) and that
furthermore we solved it and have a solution for Ψ. The next question is how to get
the original perturbation h from the knowledge of the scalar perturbation Ψ, i.e., the
unique map h = h(Ψ). This issue has been addressed by Cohen and Kegeles [15, 17], and
Chrzanowski [16] and later Wald [18] proved rigorously and in a few lines their results. In
the sequel we review Wald’s proof [18].

Start by recalling the notion of adjoint of an operator. Let O be a linear differential
operator taking a scalar, vectorial or tensorial field into another similar field. Then there
is an unique adjoint operator O† such that

ΨH (OΨ)−
(
O†ΨH

)
Ψ = ∇µsµ , (C.3)

for arbitrary fields Ψ and ΨH, and where ∇µsµ is a total divergence.
Wald’s theorem states the following. Assume that:

• the identity (C.1) is satisfied for the linear differential operators D, ε, O, LΨ;

• ΨH satisfies O†ΨH = 0, where ΨH is called the Hertz potential;

Then

• D†ΨH satisfies ε†
(
D†ΨH

)
= 0.

• Moreover, this in particular also implies that if ε is self-adoint, ε† = ε, then

h = D†ΨH is a solution of ε(h) = 0 . (C.4)

and provides the map we are looking for.
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The proof of this result is short and simple [18]. Taking the adjoint of Dε = OLΨ one
has ε†D† = L†ΨO†. Applying these operators to ΨH one gets ε†D†ΨH = 0 after using the
assumption O†ΨH = 0. Moreover, if ε† = ε, it trivially follows that ε

(
D†ΨH

)
= 0, i.e.,

h = D†ΨH is a solution of the initial perturbation equation ε(h) = 0.

Finally note that the Hertz potential construction reviewed here applies to geometries
where no energy-momentum tensor is present. For a discussion of the method when this
is not the case as well as for the second order perturbation analysis we ask the reader
to see [25].

C.2 Application: the map hµν(Ψ) for gravitational perturbations

Our starting point are the decoupled Teukolsky equations for the perturbed Weyl scalars
Ψ(1)

0 and Ψ(1)
4 , namely equations (2.12)–(2.15) of [13], which are written in (C.16) for

s = 2 and (C.17) for s = −2. These can be written as (to make the connection with the
nomenclature of the previous subsection straightforward)

OG0Ψ(1)
0 = Dµν

G0
T (1)
µν ,

OG4Ψ(1)
4 = Dµν

G4
T (1)
µν , (C.5)

where we use the superscript (1) to denote a perturbed quantity (otherwise it refers to an
unperturbed quantity), and

OG0 = (D − 3ε+ ε− 4ρ− ρ)(∆ + µ− 4γ)− (δ + π − α− 3β − 4τ)(δ + π − 4α)− 3Ψ2 ,

OG4 = (∆ + 3γ − γ + 4µ+ µ)(D + 4ε− ρ)− (δ − τ + β + 3α+ 4π)(δ − τ + 4β)− 3Ψ2 ,

(C.6)

and

Dµν
G0

= (δ + π − α− 3β − 4τ)
[
(D − 2ε− 2ρ)`(µmν) − (δ + π − 2α− 2β)`µ`ν

]
+(D − 3ε+ ε− 4ρ− ρ)

[
(δ + 2π − 2β)`(µmν) − (D − 2ε+ 2ε− ρ)mµmν

]
,

Dµν
G4

= (∆ + 3γ − γ + 4µ+ µ)
[
(δ − 2τ + 2α)n(µmν) − (∆ + 2γ − 2γ + µ)mµmν

]
+(δ − τ + β + 3α+ 4π)

[
(∆ + 2γ + 2µ)n(µmν) − (δ − τ + 2β + 2α)nµnν

]
. (C.7)

Following Wald’s procedure, the Hertz potential ΨH is introduced to be such that it
satisfies the equation O†GΨH = 0, that is

[
(∆ + 3γ − γ + µ)(D + 4ε+ 3ρ)− (δ + β + 3α− τ)(δ + 4β + 3τ)− 3Ψ2

]
ΨH0 = 0 ,[

(D − 3ε+ ε− ρ)(∆− 4γ − 3µ)− (δ − 3β − α+ π)(δ − 4α− 3π)− 3Ψ2

]
ΨH4 = 0 , (C.8)
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where, to obtain the adjoint of (C.6), we used the relations12

D† = −(D + ε+ ε− ρ− ρ) , ∆† = −(∆− γ − γ + µ+ µ) ,

δ† = −(δ + β − α− τ + π) , δ
† = −(δ + β − α− τ + π) , (C.9)

and the well known property (AB)† = B†A†. Equations (C.8) can be written, respectively,
as (C.18) with s = −2 and (C.19) with s = 2.

Since the gravitational perturbation operator ε ≡ [∆G(hαβ)]µν is self-adjoint, Wald’s
theorem tell us that the map (C.4) between the Hertz potential ΨH and the metric pertur-
bations hµν is given by hµν = 2Re

[
D†G µνΨH

]
, i.e.,

hIRGµν =
{̀

(µmν) [(D+3ε+ε−ρ+ρ)(δ+4β+3τ)+(δ+3β−α−τ−π)(D+4ε+3ρ)]

−`µ`ν(δ+3β+α−τ)(δ+4β+3τ)−mµmν(D+3ε−ε−ρ)(D+4ε+3ρ)
}

ΨH0+c.c. ,

hORGµν =
{
n(µmν)

[
(δ+β−3α+τ+π)(∆−4γ−3µ)+(∆−3γ−γ+µ−µ)(δ−4α−3π)

]
−nµnν(δ−β−3α+π)(δ−4α−3π)−mµmν(∆−3γ+γ+µ)(∆−4γ−3µ)

}
ΨH4+c.c. ,

(C.10)

where to get the adjoint of (C.7) we used again (C.9), and c.c. stands for complex conjugate.
The first of these relations gives the metric perturbations in the ingoing radiation gauge
(IRG), while the second provides the map in the outgoing radiation gauge (ORG); see (3.1).
The first relation agrees with the results of [15–18], and is equation (3.3) in the main body
of the text. The outgoing radiation map corrects typos in the relation of table 1 of [16]
that have propagated in the literature.

C.3 Application: the map Aµ(φ) for electromagnetic perturbations

We begin our discussion with the decoupled Teukolsky equations for the perturbed electro-
magnetic NP scalars φ(1)

0 and φ
(1)
2 , namely equations (3.5)–(3.8) of [13], which are written

in (C.16) for s = 1 and (C.17) for s = −1. These can be written as

OE0φ
(1)
0 = Dµ

E0
J (1)
µ ,

OE2φ
(1)
2 = Dµ

E2
J (1)
µ , (C.11)

where, again, we use the superscript (1) to denote a perturbed quantity, and

OE0 = (D − ε+ ε− 2ρ− ρ)(∆ + µ− 2γ)− (δ − β − α− 2τ + π)(δ + π − 2α) ,

OE2 = (∆ + γ − γ + 2µ+ µ)(D + 2ε− ρ)− (δ + α+ β + 2π − τ)(δ − τ + 2β) , (C.12)

12To get (C.9), introduce the internal product 〈ΨH,Oψ〉 =
R b
a
d4x
√
−gΨHOψ. For the directional deriva-

tive operators O = e µ
(a)∇µ it then follows, after integrations by parts and use of ∇µ

√
−g = 0, that

〈ΨH,Oψ〉 = −〈ψ,O†ΨH〉+
R b
a
∇µsµ with O† = −O −∇µe µ

(a) , and
R b
a
∇µsµ being the short notation for a

total divergence contribution. To compute ∇µe µ
(a) use the well-known relation between covariant derivative

of the NP tetrad and the spin coefficients [21], ∇µe(a) ν = e
(c)
νγcabe

(b)
µ, and relations (A.18).
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and

Dµ
E0

= (δ − α− β + π − 2τ)`µ − (D − ε+ ε− 2ρ− ρ)mµ ,

Dµ
E2

= (∆ + γ − γ + 2µ+ µ)mµ − (δ + α+ β + 2π − τ)nµ . (C.13)

The Hertz potential ΨH is introduced to be such that it satisfies the equation O†EΨH =
0, that is [

(∆ + γ − γ + µ)(D + 2ε+ ρ)− (δ + β + α− τ)(δ + 2β + τ)
]

ΨH0 = 0 ,[
(D − ε+ ε− ρ)(∆− 2γ − µ)− (δ − β − α+ π)(δ − 2α− π)

]
ΨH2 = 0 , (C.14)

where, to obtain the adjoint of (C.12), we used (C.9) and (AB)† = B†A†. Equations C.14
are, respectively, equations (C.18) for s = −1 and (C.19) for s = 1.

Since the Maxwell perturbation operator ε ≡ [∆E(Aα)]µ is self-adjoint, Wald’s theo-
rem tell us that the map (C.4) between the Hertz potential ΨH and the vector potential
perturbations Aµ is given by Aµ = 2Re

[
D†E µΨH

]
, i.e.,

AIRGµ = [−`µ(δ + 2β + τ) +mµ(D + 2ε+ ρ)] ΨH0 + c.c. ,

AORGµ =
[
−mµ(∆− 2γ − µ) + nµ(δ − 2α− π)

]
ΨH2 + c.c. , (C.15)

where to get the adjoint of (C.13) we used again (C.9). The first of these relations gives the
Maxwell perturbations in the ingoing radiation gauge, `µAµ = 0, while the second provides
the map in the outgoing radiation gauge, nµAµ = 0. The first relation agrees with the
results of [15–18]. The outgoing radiation map agrees with [17] and corrects typos in the
relation of table 1 of [16].

C.4 Hertz potential for spin s in a Ricci flat Petrov type D geometry

For an arbitrary Petrov type D solution we can write the decoupled Teukolsky equations in
a single equation that depends on the spin of the field [13], and the same happens for the
decoupled equations for the Hertz potential if the the solution is furthermore Ricci flat.

For positive spin and negative spin, Teukolsky’s decoupled equations are, respec-
tively, [13][

[D −(2s− 1)ε+ε− 2sρ− ρ] (∆+µ− 2sγ)−[δ+π − α−(2s− 1)β − 2sτ ] (δ+π − 2sα)

−3s
(
s− 1

2

)
(s− 1)Ψ2

]
Ψ(s) = 4πT(s), for s = +2,+1,+

1
2
, 0 , (C.16)[

[∆−(2s+1)γ − γ − 2sµ+µ] (D − 2sε− ρ)−
[
δ − τ+β −(2s+1)α− 2sπ

]
(δ − τ − 2sβ)

+3s
(
s+

1
2

)
(s+ 1)Ψ2

]
Ψ(s) = 4πT(s), for s = −2,−1,−1

2
, 0 . (C.17)

The relation between the nomenclature used here and the original notation of Teukolsky [13]
was already displayed in table 1 and associated discussion.
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The Hertz potential Ψ(s)
H in the ingoing radiation gauge describes negative spin s =

−2,−1,−1
2 field perturbations, while in the outgoing radiation gauge Ψ(s)

H describes positive
spin s = +2,+1,+1

2 perturbations. They are, respectively, the solutions of the scalar
equations[

[∆−(2s+1)γ−γ+µ] [D−2sε−(2s+1)ρ]−
[
δ+β−(2s+1)α−τ

]
[δ−2sβ−(2s+1)τ ]

+3s
(
s+

1
2

)
(s+ 1)Ψ2

]
Ψ(s)

H = 0, for s = −2,−1,−1
2
, 0 , (C.18)[

[D−(2s−1)ε+ε−ρ] [∆−2sγ−(2s−1)µ]−[δ−(2s−1)β−α+π]
[
δ−2sα−(2s−1)π

]
−3s

(
s− 1

2

)
(s− 1)Ψ2

]
Ψ(s)

H = 0, for s = +2,+1,+
1
2
, 0 . (C.19)

The conjugate Teukolsky perturbations Ψ(s) to these Hertz potentials Ψ(s)
H can be read

from tables 1 and 2.
For the NHEK geometry written in global coordinates the NP tetrad is written in (2.3),

the spin coefficients are listed in (A.18), and the directional derivative operators can be
read from (A.21). Using this information in (C.16)–(C.17), and (C.18)–(C.19) we get the
master equation (2.5).

D Decoupling limit of near-extreme Kerr. Mass changing modes

In this appendix we show that a decoupling limit of the near-extremal Kerr black hole
yields the NHEK geometry. We follow [34] where decoupling limits like the one we take
were first discussed for charged non-rotating solutions.

The Kerr black hole solution in Boyer-Lindquist form reads,

ds2 =
Σ ∆

(r̃2 + a2)2 −∆a2 sin2 θ
dt̃2 − Σ

∆
dr̃2 − Σdθ2

− sin2 θ

(
r̃2 + a2

)2 −∆a2 sin2 θ

Σ

(
dφ̃−

a
(
a2 + r̃2 −∆

)
(r̃2 + a2)2 −∆a2 sin2 θ

dt̃

)2

, (D.1)

with

∆ = (r̃ − r̃−) (r̃ − r̃+) , Σ = r̃2 + a2 cos2 θ ,

r̃± =
1
2

(
`2P∆E + `p

√
`2P∆E2 + 4J

)
±
√
`3P∆E

√
`2P∆E2 + 4J . (D.2)

We used the fact that in four dimensions the Planck length `P is related to Newton’s
constant G by `2P = G, and we defined the excitation energy above extremality as

∆E =
m− a
`2P

, with a = `2P
J

m
, (D.3)

where J and M = m/`2P are the ADM angular momentum and mass of the Kerr black hole.
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The black hole temperature is

TH =
r2

+ − a2

4πr+

(
r2

+ + a2
) , (D.4)

from which follows that near-extremality the relation between the excitation energy and
the temperature is

∆E ' 8π2J
3
2T 2

H`P . (D.5)

Typically, the energy of a quantum of Hawking emission is of order TH . When this energy is
of order or greater than the available energy above extremality, TH & ∆E, the semiclassical
analysis of the black hole thermodynamics breaks down. This occurs at an excitation energy
of order

Egap '
1

8π2J
3
2 `P

. (D.6)

We now want to take a decoupling limit where

`P → 0 , with (TH , J) fixed. (D.7)

In this limit the excitation energy ∆E vanishes and the gap energy Egap goes to infinity.
In the decoupling limit, and after introducing the new radial and azimuthal coordinates

(U,ψ):

r̃ = r̃+ + 2`2pU , φ̃ = ψ +
t̃

2m
, (D.8)

the Kerr geometry (D.1) reduces to

ds2

`2P
=−2JΩ2(θ)

[
−U(U+4πJTH)

J2
dt̃2+

dU2

U(U+4πJTH)
+dθ2+Λ2(θ)

(
dψ+

(
2πTH+

U

J

)
dt̃

)2]
,

(D.9)
with Ω2(θ) and Λ2(θ) defined in (2.2).

Finally if we introduce the new time, radial and azimuthal coordinates (τ, y, ϕ) through
the transformations,

t̃ =
1

2πTH
[arctan (τ − y) + arctan (τ + y)] ,

U =
πTH J

y

[
(y − 1)2 − τ2

]
,

ψ = ϕ+ arctan
(
τ − 1
y

)
+ arctan

(
τ + 1
y

)
, (D.10)

the decoupling geometry (D.9) reduces to

ds2

`2P
= −2JΩ2(θ)

[
−dτ2 + dy2

y2
+ dθ2 + Λ2(θ)

(
dϕ+

dτ

y

)2 ]
. (D.11)

We recognize this geometry as the NHEK solution written in Poincaré coordinates. A final
transformation between the Poincaré coordinates (τ, y, θ, ϕ) and the global coordinates
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(t, r, θ, φ) [1],

τ =
sin t
√

1 + r2

cos t
√

1 + r2 + r
,

y =
(

cos t
√

1 + r2 + r
)−1

,

ϕ = φ+ ln
(

cos t+ r sin t
1 + sin t

√
1 + r2

)
, (D.12)

takes (D.11) into the NHEK (2.1) written in global coordinates. Therefore, at the classical
level, when we take the decoupling limit (D.7) of the near-extremal Kerr geometry, one
gets a geometry that is independent of the temperature TH and that is precisely the NHEK
geometry.

An important observation is that going to the next-to-leading order in the `P expansion,
a path similar to (D.7)–(D.12) yields the next-to-leading order contribution to (D.11)
or (2.1), that we call hµν . This hµν can be considered as a perturbation to the NHEK since
it satisfies the linearized Einstein equations (with h 6= 0) by construction. Asymptotically,
hµν goes as a power of r2 higher (in all components) than the GHSS boundary conditions [2].

To interpret physically these perturbations we compute the relevant conserved charges
associated to them as defined in (4.2). One finds that the energy of these perturbations
is finite, Q∂t[h, g] 6= 0, while the U(1) charge vanishes, Q∂φ[h, g] = 0. These perturba-
tions therefore increase the energy of the solution while leaving its angular momentum
unchanged. They correspond thus to perturbations that take NHEK away from the ex-
tremality state. Since the full series expansion in `P reconstructs near-extreme Kerr, these
perturbations actually take the NHEK geometry into near-extreme Kerr black hole.
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